
Laser Assisted Plasma Spectrochemistry

Laser Ablation

R.E. RussoR.E. Russo

2004 Winter Plasma Conference on
Plasma Spectrochemistry

Fort Lauderdale, Florida
January 7, 2004



Name - DivRev03  Page 2

* Introduction – applications

* Analytical Issues

* Some fundamentals

* Shadowgraph imaging 

* Spectroscopic imaging 

* Femtosecond ablation

* New Direction

* Conclusion

OutlineOutline



Name - DivRev03  Page 3

Applications
–Pulsed Laser Deposition
–Nanotechnology
–Medical
–Micromachining
–X-ray lasers
–Electron accelerators
–Chemical Analysis

Laser AblationLaser Ablation

Approx 1,000 papers/year last 10 years

Applications based on empirical basis!
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Fabrication of thin films from ‘any’ material; unique material structures
Applications: superconductivity, photovoltaic, electrodes, catalysts, ….
“Laser ablation is stoichiometric” – Materials Science community
PLD not at atmospheric pressure!

Pulsed Laser DepositionPulsed Laser Deposition
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• Laser ablation used to form nanoparticles!
- spheres, tubes, wires

NanomaterialsNanomaterials

Atomic Force Microscope 
(AFM) image of brass 
nanoparticles on silicon 
substrate.

1 µm

Chemistry and size of particles 
determined by laser, sample, 
and environment properties!
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LASIK

Tiny particles of the cornea evaporate, 
allowing a contact-free ablation.

Tatoo removal

MedicalMedical

Angioplasty, Surgury, Podiatry, Prostate, 
ENT, Dentistry…….
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• Direct solid analysis
• Any solid sample
• No sample preparation
• Small sample quantity
• No solvents
• Spatial (micro) analysis
• Rapid, real-time analysis
• Laboratory analysis (ICP-MS)
• Field analysis (LIBS)

Laser ablation is faster, less expensive, easier, and safer than classical liquid 
dissolution!!!!

Ablate unknown sample – analyze vapor

Laser Ablation for Chemical AnalysisLaser Ablation for Chemical Analysis
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Micro channel
in glass

Spatial hair
analysis

Thin film depth
profiling
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Purchased an ICPMS as an expensive detector to study LA at atmospheric 
pressure- told that it was ‘a good source to digest all mass!’

IssuesIssues

Accuracy: fractionation - absolute (single pulse) and crater related
Precision: ablation-rate repeatability 
Matrix dependence: ablated quantity related to material properties

• Laser (type, wavelength, pulse duration, energy, intensity)
• Environment (gas, pressure)
• Particles (size, chemistry, size distribution, transport)
• ICP and MS
• ???
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WavelengthWavelength

Guillong M. Horn I. Gunther D. A comparison of 266 nm, 213 nm and 193 nm produced from a 
single solid state Nd : YAG laser for laser ablation ICP-MS. Journal of Analytical Atomic 
Spectrometry. 18(10):1224-1230, 2003.
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ParticlesParticles

Aeschliman DB. Bajic SJ. Baldwin DP. Houk RS. High-speed digital photographic study of an inductively 
coupled plasma during laser ablation: comparison of dried solution aerosols from a microconcentric 
nebulizer and solid particles from laser ablation. [Article] Journal of Analytical Atomic Spectrometry. 
18(9):1008-1014, 2003.
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ICPMSICPMS

Hattendorf B. Latkoczy C. Gunther D. Laser ablation-ICPMS. Analytical Chemistry. 
75(15):341A-347A, 2003.
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FractionationFractionation

Kozlov B. Saint A. Skroce A. Elemental fractionation in the formation of particulates, as observed by 
simultaneous isotopes measurement using laser ablation ICP-oa-TOFMS.  Journal of Analytical Atomic 
Spectrometry. 18(9):1069-1075, 2003.
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TransportTransport

J.Koch, I.Feldmann, N.Jakubowski, K.Niemax, Elemental composition of laser ablation aerosol 
particles deposited in the transport tube to an ICP. Spectrochimica Acta Part B 57 (2002) 975–985
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??????

Hirata T. Hayano Y. Ohno T. Improvements in precision of isotopic ratio measurements using laser ablation-
multiple collector-ICP-mass spectrometry: reduction of changes in measured isotopic ratios. Journal of 
Analytical Atomic Spectrometry. 18(10):1283-1288, 2003.
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•Kyser K. Chipley D. Bukata A. Polito P. Fitzpatrick A. Alexandre P. 
Application of laser ablation and high resolution ICPMS to the analysis of 
metal contents in tree rings, ages of uranium-rich minerals and se contents in
sulphide ores.  Canadian Journal of Analytical Sciences & Spectroscopy. 
48(5):258-268, 2003.

•Ponting M. Evans JA. Pashley V. Fingerprinting of Roman mints using laser-
ablation MC-ICP-MS lead isotope analysis. Archaeometry. 45 (Part 4):591-
597, 2003.

•Erel E. Aubriet F. Finqueneisel G. Muller JF. Capabilities of laser ablation 
mass spectrometry in the differentiation of natural and artificial opal 
gemstones. Analytical Chemistry. 75(23):6422-6429, 2003.

•Dimov SS. Chryssoulis SL. Lipson RH. Quantitative elemental analysis for 
rhodium and palladium in minerals by time-of-flight resonance ionization 
mass spectrometry.  Analytical Chemistry. 75(23):6723-6727, 2003.

•Hola M. Kanicky V. Mermet JM. Otruba V. Direct solid analysis of powdered 
tungsten carbide hardmetal precursors by laser-induced argon spark ablation 
with inductively coupled plasma atomic emission spectrometry.  Analytical &
Bioanalytical Chemistry. 377(7-8):1165-1174, 2003.

•Eggins SM. Laser ablation ICP-MS analysis of geological materials 
prepared as lithium bordte glasses. Geostandards Newsletter. 27(2):147-
162, 2003.

•Uryu T. Yoshinaga J. Yanagisawa Y. Endo M. Takahashi J. Analysis of lead 
in tooth enamel by laser ablation-inductively coupled plasma-mass 
spectrometry.  Analytical Sciences. 19(10):1413-1416, 2003.

•Mateo MP. Cabalin LM. Laserna J. Line-focused laser ablation for depth-
profiling analysis of coated and layered materials. Applied Optics. 
42(30):6057-6062, 2003.

•Stein H. Schersten A. Hannah J. Markey R. Subgrain-scale decoupling of 
Re and Os-187 and assessment of laser ablation ICP-MS spot dating in
molybdenite. Geochimica et Cosmochimica Acta. 67(19):3673-3686, 2003.

•Xu XS. Deng P. O'Reilly SY. Griffin WL. Zhou XM. Tan ZZ. Single zircon 
LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its
petrogenetic significance. Chinese Science Bulletin. 48(17):1892-1899, 2003.

•Resano M. Vanhaecke F. Hutsebaut D. De Corte K. Moens L. Possibilities 
of laser ablation-inductively coupled plasma-mass spectrometry for diamond 
fingerprinting. Journal of Analytical Atomic Spectrometry. 18(10):1238-1242, 

•Gillanders BM. Kingsford MJ. Spatial variation in elemental composition of
otoliths of three species of fish (family Sparidae). Estuarine Coastal & Shelf 
Science. 57(5-6):1049-1064, 2003.

•Tibi M. Heumann KG. Multi-element trace determinations in pure alkaline 
earth fluoride powders by high-resolution ICP-MS using wet-chemical 
sample preparation and laser ablation. Analytical & Bioanalytical Chemistry. 
377(1):126-131, 2003.

•Seltzer MD. Laser ablation inductively coupled plasma mass spectrometry 
measurement of isotope ratios in depleted uranium contaminated soils.  
Applied Spectroscopy. 57(9):1173-1177, 2003.

•Bleiner D. Lienemann P. Ulrich A. Vonmont H. Wichser A. Spatially resolved 
quantitative profiling of compositionally graded perovskite layers using laser 
ablation-inductively coupled plasma mass spectrometry. Journal of Analytical 
Atomic Spectrometry. 18(9):1146-1153, 2003.

•Chan GCY. Chan WT. Plasma-related matrix effects in inductively coupled 
plasma - atomic emission spectrometry by group I and group II matrix-
elements. Spectrochimica Acta Part B-Atomic Spectroscopy. 58(7):1301-
1317, 2003.

Sample 2003 PublicationsSample 2003 Publications
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•Trejos T. Montero S. Almirall JR. Analysis and comparison of glass 
fragments by laser ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS) and ICP-MS. Analytical & Bioanalytical Chemistry. 
376(8):1255-1264, 2003.

•Hobbs AL. Almirall JR. Trace elemental analysis of automotive paints by 
laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).  
Analytical & Bioanalytical Chemistry. 376(8):1265-1271, 2003.

•Swearer SE. Forrester GE. Steele MA. Brooks AJ. Lea DW. Spatio-temporal 
and interspecific variation in otolith trace-elemental fingerprints in a 
temperate estuarine fish assemblage.  Estuarine Coastal & Shelf Science. 
56(5-6):1111-1123, 2003.

•Jeffries TE. Fernandez-Suarez J. Corfu F. Alonso GG. Advances in U-Pb 
geochronology using a frequency quintupled Nd : YAG based laser ablation 
system (λ=213 nm) and quadrupole based ICP-MS. Journal of Analytical Atomic 
Spectrometry. 18(8):847-855, 2003.

•Aeschliman DB. Bajic SJ. Baldwin DP. Houk RS. Spatially-resolved analysis 
of solids by laser ablation-inductively coupled plasma-mass spectrometry: 
trace elemental quantification without matrix-matched solid standards. 
Journal of Analytical Atomic Spectrometry. 18(8):872-877, 2003.

•Watanabe K. Hattori K. Kawarabayashi J. Iguchi T. Improvement of 
resonant laser ablation mass spectrometry using high-repetition-rate and 
short-pulse tunable laser System, Spectrochimica Acta Part B-Atomic 
Spectroscopy. 58(6):1163-1169, 2003.

•Balcerzak M. An overview of analytical applications of time of flight-mass 
spectrometric (TOF-MS) analyzers and an inductively coupled plasma-TOF-
MS technique, Analytical Sciences. 19(7):979-989, 2003.

•Cox RA. Wilton DHC. Kosler J. Laser-ablation U-Th-Pb in situ dating of zircon 
and allanite: An example from the October Harbour granite, central coastal 
Labrador, Canada. Canadian Mineralogist. 41(Part 2):273-291, 2003.

• Kosler J. Simonetti A. Sylvester PJ. Cox RA. Tubrett MN. Wilton DHC. 
Laser-ablation ICP-MS measurements of Re/Os in molybdenite and 
implications for Re-Osgeochronology. Canadian Mineralogist. 41(Part 2):307-
320, 2003. 

• Muller A. Wiedenbeck M. Van den Kerkhof AM. Kronz A. Simon K. Trace 
elements in quartz - a combined electron microprobe, secondary ion mass 
spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. 
European Journal of Mineralogy. 15(4):747-763, 2003.

Sample 2003 PublicationsSample 2003 Publications
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Laser Ablation?Laser Ablation?
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Time (seconds)

Electrons absorb
photons -

femtoseconds

Electron emission 
from surface -

picoseconds

Plasma formation
- nanoseconds

Particle ejection 
- microseconds

Laser Ablation Time ScaleLaser Ablation Time Scale



Name - DivRev03  Page 20

Fluence or Irradiance

ICP Intensity
LIBS Intensity 
Plasma Properties
Crater Properties
Plume Image

Laser AblationLaser Ablation

2
1

3

4

Complexity:
LMI = non-linear processes
Laser-plasma interaction
Plasma-sample interaction
Particles (size, size distribution, chemistry)
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• Quantity of ablated mass
—Amount of ablated mass depends 

non-linearly on laser energy
• irradiance,  pulse width

• Composition (Chemistry) of 
ablated mass
—Composition of ablated mass 

depends non-linearly on laser 
energy

—Composition of ablated mass and 
sample can be the same using 
appropriate laser conditions Sample: Brass

50% Cu, 50% Zn

30% Cu, 70% Zn 70% Cu, 30% Zn

50% Cu, 50% Zn

1 mJ

1 ng

2 mJ

2? ng 16 ng
1.7 ng

Sample: Brass 
50% Cu, 50% Zn 

Sample: Brass 
50% Cu, 50% Zn 

Ablated MassAblated Mass
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Fundamental Studies of LA Plasmas

Time-resolved imaging and 
interferometry

Spectroscopic imaging

Fundamental Studies of LA Plasmas

Time-resolved imaging and 
interferometry

Spectroscopic imaging
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Computer 
& 

Electronics

Pump laser

Probe laser

delay stage

photodiode/oscilloscope

mirror

filter

lens

camera

mirror beam splitter

lens

CCD

mirror

beam splitter

mirror

target

mirror

Time-resolved imaging and interferometryTime-resolved imaging and interferometry
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Experimental System pump-probe techniqueExperimental System pump-probe technique
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(3 ns, 2.1x1010 W/cm2)

below threshold

above threshold
(3 ns, 1.8x1010 W/cm2)

10 ns 160 ns 760 ns 1.6 µs 4.9 µs64 ns

100 µm

4.2 µs1.3 µs860 ns200 ns70 ns5 ns

100 µm

Plume evolution – from nanosecond to microsecond

Phase ExplosionPhase Explosion
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Plasma Spectroscopy (LIBS)Plasma Spectroscopy (LIBS)
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Silicon Emission vs. Delay TimeSilicon Emission vs. Delay Time

•Mostly continuum 
emission at 10 ns delay 

•The longer the delay, 
the narrower is the 
peak width

•Continuum emission 
decreases with delay 
time

•Characteristics of 
emission related to 
plasma properties
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1. Electron number  density is calculated 
from Stark broadened FWHM :
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2. Plasma temperature is calculated from   
line and continuum ratio:

Stark broadened line profile 
and Lorentzian fitting:
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Fractionation vs. Crater Aspect RatioFractionation vs. Crater Aspect Ratio
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Spectroscopy

80µm 165µm 490µm

50
0µ

m

Craters laser drilled in edge of Fused Silica

Laser
Plasma

Lens

Laser-drilled craterLaser-drilled crater
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Electron Density vs. DistanceElectron Density vs. Distance
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Delay time = 100 ns 
Irradiance = 6.95 GW/cm
6 ns pulse, 266nm

Higher aspect ratio = 
higher temperature and 
electron number density
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Femtosecond 
Ablation

Femtosecond 
Ablation



Name - DivRev03  Page 38

ns pulsed laser ablation

Large heat-effected zone
Laser-plasma interaction
Ejection of large melted particles

fs pulsed laser ablation

Nominal heat-effected zone
No laser-plasma interaction
Condensation of smaller particles

Laser Material InteractionsLaser Material Interactions
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Nanosecond:
Laser plasma interaction
Significant plasma influence on sampling

Laser: 266 nm, 150 fs

Laser: 266 nm, 6 ns

Laser-induced Plasma ImagesLaser-induced Plasma Images

Photographs of laser explosion at a copper sample surface

Femtosecond:
No laser plasma interaction
Reduced plasma influence on sampling
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longer lifetime for ns 
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Laser Induced Plasma Emission IntensityLaser Induced Plasma Emission Intensity
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150 fs 6 ns

Craters in Brass Sample (40 pulses)Craters in Brass Sample (40 pulses)
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fs laser ns laser

Brass (Cu 85.1%, Zn 14.9%)

Particles collected at exit of ablation chamber –
significant difference in particle size and morphology!

Scanning Electron MicroscopyScanning Electron Microscopy
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100 nm

ablated brass particles – SEM 10x from previous slide

Majority of mass ablated (particle diameter):
fs laser ablation < 250nm
ns laser ablation > 750nm

Scanning Electron MicroscopyScanning Electron Microscopy
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Femtosecond Laser Ablation 
ICPMS

Femtosecond Laser Ablation 
ICPMS
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Improved matrix independence (for glasses) using femtosecond laser

NIST Silicate GlassesNIST Silicate Glasses

Si, Al and Ca have the same concentration in each NIST sample – ideal 
case would be to laser ablate the same quantity from each sample and 

measure the same concentration
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Each data point represents integrated signal intensity during repetitive sampling at a 
single sample spot. Analysis number represents different sample spot.

ICPMS PrecisionICPMS Precision
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 NIST 610
 NIST 612
 Monazite Managotry
 Monazite Moacyr
 zircon 91500

Classic nanosecond-induced 
fractionation versus crater 
formation – Pb/U ratio changes as 
crater is formed!

Significantly reduced matrix 
and fractionation effects using 
fs laser ablation!

FractionationFractionation

ns laser

fs laser
Ideal = constant ratio!
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Poitrasson F. Mao XL. Mao SS. Freydier R. Russo RE. Comparison of ultraviolet femtosecond and nanosecond 
laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Analytical 
Chemistry. 75(22):6184-6190, 2003.

AccuracyAccuracy
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FutureFuture
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AFM tip interaction
Silicon sample

Diameter = 80nm

Spatial resolution in a single particle
Grain boundaries in a crystal

Nano AblationNano Ablation

Nanoscale Atmospheric Pressure Laser Ablation-Mass 
Spectrometry, Raoul Stockle, Patrick Setz, Volker 
Deckert, Thomas Lippert, Alexander Wokaun, and
Renato Zenobi, Anal. Chem.2001, 73,1399-1402

Looking at the nanoscale: scanning near-field optical 
microscopy, M. De Serio, R. Zenobi, V. Deckert

Trends in Analytical Chemistry, Vol. 22, No. 2, 2003

Topographical and Chemical Microanalysis of Surfaces 
with a Scanning Probe Microscope and Laser-Induced 
Breakdown Spectroscopy, Dmitri Kossakovski and J. L. 
Beauchamp, Anal. Chem., 2000, 72,4731-4737
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The smooth surfaces of angular and rounded rocks seen in this image of the martian terrain released by NASA 
Tuesday Jan. 6, 2004 may be the result of wind-polishing debris laser ablation. The picture was taken by the 
panoramic camera on the Mars Exploration Rover Spirit. NASA unveiled a breathtaking color photo of the 
surface of Mars, the sharpest photograph ever taken on the surface of Mars. NASA scientists called the picture a 
'postcard,' sent across 105 million miles of space to Earth.

Martian AblationMartian Ablation



Name - DivRev03  Page 55

• Laser ablation is an ideal technology for direct solid sample chemical analysis!

• Many results based on specific instrument 

• Laser ablation produces particles! “Duh” (H. Simpson) 

• ‘Better’ is relative - based on application and availability

• Femtosecond laser ideal for studying laser ablation

• Fundamental – modeling studies needed

— Bogaerts A. Chen ZY. Gijbels R. Vertes A. Laser ablation for analytical sampling: what can we learn 
from modeling?  Spectrochimica Acta Part B-Atomic Spectroscopy. 58(11):1867-1893, 2003.

• The chemistry is critical!

• Influence of chemistry on ablation, plasma properties, particles

• Influence of plasma on ablation

ConclusionsConclusions

Ultimate Goal
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